COMPONENTS OF A COMPARATIVE ANALYSIS OF THE EFFICIENCY OF THE TAX BURDEN ON INCOME: APPLICATION OF STOCHASTIC FRONTIER ANALYSIS

Victor Vladimirovich Gluschenko^{*} Vyacheslav Victorovich Lyashenko^{**} Valentyna Valerivna Somova^{***}

Abstract. Sustainable and efficient economic development is largerly defined by the current taxation system in which an important role is played by household incomes. Taking into consideration this fact this paper describes separate components of the comparative analysis of the efficiency of household income taxation burden and validates the possibility of using stochastic frontier analysis for this research. In particular the real-life statistics is used to show the relation between the growth of gross regional product and household incomes in their regional aspect. At the same time the author notes that inadequate wage rise of the population and poorly balanced burden of taxation in terms of the part of household income liable to taxation leads to the reduction in the taxes received.

^{**} The chief of the laboratory, Kharkov National University of Radio Electronics, Ukraine

http://www.ijmra.us

^{***} PhD student, V.N. Karazin National University of Kharkov, Ukraine

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

Introduction

Taxes are fundamental economic category which helps to implement and provide not only fiscal and enforcing functions of social development but guiding and innovating ones as well.

Herewith Bird & Zolt (2004), Schultz (1998), Lee & Gordon (2005) believe that household income taxes hold a special place among other taxes. This is due to the fact that household income tax is a key tax which determines both the structure of budgeting sources at various levels and orientation of state's social policy in relation to different territories and population groups.

At the same time in the opinion of Andrews (1972) the size of collected household income taxes depends on the size of income received which in its turn can be associated with the level of economic development of a certain territory where the population is able to receive the relevant income.

Thus one of the directions of research into components of efficiency of household income taxation burden can be the comparative analysis of household incomes by reference to the administrative-territorial division of the country and level of development of these separate territories.

Keywords: эффективность, налог, структура доходов, доходы населения, административно-территориальное деление страны, stochastic frontier analysis.

<u>Methodology and data analysis</u>

Kuzemin & Lyashenko (2008) say that the grounds for comparing various economic data which reflect any given phenomena are in the first instance the analysis of spatial and time dynamics of the analyses and processes under consideration.

At the same time with the aim of specifying the comparative analysis of the efficiency of household income burden from the point of view of administrative-territorial division of the country it is reasonable to use stochastic frontier analysis which has been widely applied in the works by Farrell (1957), Aigner, Lovell & Schmidt (1977), Battese & Coelli (1992). The gist of this methodology is in building the frontier of the efficiency of process (phenomenon) being researched by the methods of statistical analysis in the form of a regressional relationship

Volume 3, Issue 10

<u>ISSN: 2249-1058</u>

between research-committed factors; in positioning the economic process or object under research in relation to the frontier of efficiency defined earlier; in defining the efficiency of economic process or object under research in the form of a function which will describe attainability of efficiency frontier which in line with the works of Jondrow, Knox Lovell, Materov&Schmidt (1982) can be represented as follows:

$$TE_i = e^{-M(u_i/\hat{\varepsilon}_i)},\tag{1}$$

if TE_i is efficiency of the process or object under research (TE_i is the total number of objects, processes under research) and more precisely their technical efficiency;

 $M(u_i | \hat{\varepsilon}_i)$ is the conditional mathematical expectation u_i in the estimated values $\hat{\varepsilon}_i$, which are integral randomized members of the model of received efficiency frontier of the process of phenomenon under research by the methods of statistical analysis:

$$y = f(x, \beta) + \varepsilon, \qquad (2)$$

$$\varepsilon = v - u, \tag{3}$$

y – vector of results of object or process under research, x – vector of the resources used for receiving any given results of the object of process under research, f – function of the efficiency frontier in the object or process under research, β - vector of f function parameters; ε - integral randomized member of model, v - vector of model's random movements, u – vector describing technical inefficiency of the performance of object or phenomenon under research.

The resulting assessments of the efficiency of household income together with the data on economic development of any given administrative –territorial units (regions) of the country are the basis for conducting the relevant comparative analysis.

In order to specify further analysis we shall consider the data which describe the development of certain administrative territorial units of Ukraine and the sizes of income obtained by population in these administrative-territorial units. The specific nature of this research is determined not only by a deeper insight of authors into the issue under consideration but also by the fact that Ukraine being a developing country as stated by Bank for International Settlement and is facing significant economic challenges on its way to market reforms as compared to other European countries.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Volume 3, Issue 10

<u>ISSN: 2249-1058</u>

All the data for further analyses were retrieved from the official site of Ukraine's Service for Statistics ukrstat.gov.ua. Herewith with the aim of further research we chose the period of 2009-2010 which is the period of overcoming the consequences of the first wave of latest global financial-economic crisis. At the same time it should be noted that the data for the further researches for period 2009-2010 are not preliminary but verified.

A simple comparison of the test data

Table 1 shows the data (as generalized and calculated according to ukrstat.gov.ua information) which reflect absolute values and their changes that describe the development of certain Ukrainian regions, the size of household income and the taxes paid therewith.

In particular Table 1 defines:

- digital numbering of some Ukrainian regions;

- absolute values of gross regional product which in broad terms reflects and describes the level of development of each region;

- absolute values of incomes received by population in some regions and absolute values of the sizes of taxes paid from these incomes which generally reflect the existing level of tax burden on household income.

Herewith in Table 1 it can be seen that within the period of time under consideration the growth of gross regional product conditioned the subsequent growth of household income in some regions.

Table 1.Some data which describe development of Ukrainian regions and absolute values of household incomes and the taxes paid from them

Dari	Gross regional product,		Income, mln. UAH			Tawas min UAU			
Regi	mln. UAH					Taxes, IIIII. UAH			
0115	2009	2010	changes	2009	2010	changes	2009	2010	changes
1	27396	32426	5030	32046	39282	7236	1320	1828	508
2	20104	23589	3485	26813	33448	6635	1666	1276	-390
3	12225	14429	2204	15177	19194	4017	555	710	155
4	93331	116136	22805	72138	88980	16842	2813	4483	1670
5	103739	128986	25247	96596	118554	21958	4168	5957	1789
6	14731	18743	4012	20655	25957	5302	904	1001	97

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology

http://www.ijmra.us

Volume 3, Issue 10

<u>ISSN: 2249-1058</u>

7 12542 15299 2757 16492 20812 4320 731 768 37 8 37446 42736 5290 37019 45379 8360 1988 2125 137 9 17241 20446 3205 21023 26537 5514 616 912 296 10 37548 44953 7405 34358 42338 7980 1922 2095 173 11 13389 15749 2360 16149 20069 3920 935 826 -109 12 38451 45541 7090 41916 51523 9607 2040 2335 295 13 35955 41655 5700 43813 55162 11349 1690 2269 579 14 20336 24055 3719 20723 25724 5001 947 1113 166 15 48647 53878 5231 42422 5										
8 37446 42736 5290 37019 45379 8360 1988 2125 137 9 17241 20446 3205 21023 26537 5514 616 912 296 10 37548 44953 7405 34358 42338 7980 1922 2095 173 11 13389 15749 2360 16149 20069 3920 935 826 -109 12 38451 45541 7090 41916 51523 9607 2040 2335 295 13 35955 41655 5700 43813 55162 11349 1690 2269 579 14 20336 24055 3719 20723 25724 5001 947 1113 166 15 48647 53878 5231 42422 52828 10406 1952 2458 506 16 33629 44291 10662 28239	7	12542	15299	2757	16492	20812	4320	731	768	37
9 17241 20446 3205 21023 26537 5514 616 912 296 10 37548 44953 7405 34358 42338 7980 1922 2095 173 11 13389 15749 2360 16149 20069 3920 935 826 -109 12 38451 45541 7090 41916 51523 9607 2040 2335 295 13 35955 41655 5700 43813 55162 11349 1690 2269 579 14 20336 24055 3719 20723 25724 5001 947 1113 166 15 48647 53878 5231 42422 52828 10406 1952 2458 506 16 33629 44291 10662 28239 34548 6309 1204 1683 479 17 13469 15882 2413 17458	8	37446	42736	5290	37019	45379	8360	1988	2125	137
10375484495374053435842338798019222095173111338915749236016149200693920935826-109123845145541709041916515239607204023352951335955416555700438135516211349169022695791420336240553719207232572450019471113166154864753878523142422528281040619522458506163362944291106622823934548630912041683479171346915822413174582217047127329031711816060183332273203182469343757291001272191117312726155315608193993791836647-189205892365293637054519673771285818702878100821134361564922131673120776404575077020221575818096233821526269951731025993-322318707223543647213512588645359151080165248484989214081261915911	9	17241	20446	3205	21023	26537	5514	616	912	296
111338915749236016149200693920935826-1091238451455417090419165152396072040233529513359554165557004381355162113491690226957914203362405537192072325724500194711131661548647538785231424225282810406195224585061633629442911066228239345486309120416834791713469158822413174582217047127329031711816060183332273203182469343757291001272191117312726155315608193993791836647-1892058923652936370545196737712858187028781008211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-16325146361700823721891723021 <td< td=""><td>10</td><td>37548</td><td>44953</td><td>7405</td><td>34358</td><td>42338</td><td>7980</td><td>1922</td><td>2095</td><td>173</td></td<>	10	37548	44953	7405	34358	42338	7980	1922	2095	173
1238451455417090419165152396072040233529513359554165557004381355162113491690226957914203362405537192072325724500194711131661548647538785231424225282810406195224585061633629442911066228239345486309120416834791713469158822413174582217047127329031711816060183332273203182469343757291001272191117312726155315608193993791836647-1892058923652936370545196737712858187028781008211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798	11	13389	15749	2360	16149	20069	3920	935	826	-109
13359554165557004381355162113491690226957914203362405537192072325724500194711131661548647538785231424225282810406195224585061633629442911066228239345486309120416834791713469158822413174582217047127329031711816060183332273203182469343757291001272191117312726155315608193993791836647-1892058923652936370545196737712858187028781008211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125866453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-15622764527785133371448950 <td>12</td> <td>38451</td> <td>45541</td> <td>7090</td> <td>41916</td> <td>51523</td> <td>9607</td> <td>2040</td> <td>2335</td> <td>295</td>	12	38451	45541	7090	41916	51523	9607	2040	2335	295
14 20336 24055 3719 20723 25724 5001 947 1113 166 15 48647 53878 5231 42422 52828 10406 1952 2458 506 16 33629 44291 10662 28239 34548 6309 1204 1683 479 17 13469 15882 2413 17458 22170 4712 732 903 171 18 16060 18333 2273 20318 24693 4375 729 1001 272 19 11173 12726 1553 15608 19399 3791 836 647 -189 20 58923 65293 6370 54519 67377 12858 1870 2878 1008 21 13436 15649 2213 16731 20776 4045 750 770 20 22 15758 18096 2338 21526 26699 5173 1025 993 -32 23 18707 2	13	35955	41655	5700	43813	55162	11349	1690	2269	579
1548647538785231424225282810406195224585061633629442911066228239345486309120416834791713469158822413174582217047127329031711816060183332273203182469343757291001272191117312726155315608193993791836647-1892058923652936370545196737712858187028781008211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	14	20336	24055	3719	20723	25724	5001	947	1113	166
1633629442911066228239345486309120416834791713469158822413174582217047127329031711816060183332273203182469343757291001272191117312726155315608193993791836647-1892058923652936370545196737712858187028781008211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	15	48647	53878	5231	42422	52828	10406	1952	2458	506
1713469158822413174582217047127329031711816060183332273203182469343757291001272191117312726155315608193993791836647-1892058923652936370545196737712858187028781008211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	16	33629	44291	10662	28239	34548	6309	1204	1683	479
1816060183332273203182469343757291001272191117312726155315608193993791836647-1892058923652936370545196737712858187028781008211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	17	13469	15882	2413	17458	22170	4712	732	903	171
191117312726155315608193993791836647-1892058923652936370545196737712858187028781008211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	18	16060	18333	2273	20318	24693	4375	729	1001	272
2058923652936370545196737712858187028781008211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	19	11173	12726	1553	15608	19399	3791	836	<u>6</u> 47	-189
211343615649221316731207764045750770202215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	20	58923	65293	6370	54519	67377	12858	1870	2 <mark>878</mark>	1008
2215758180962338215262669951731025993-3223187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	21	<mark>13</mark> 436	15649	2213	16731	20776	4045	750	770	20
23187072235436472135125886453591510801652484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	22	15758	18096	2338	21526	26699	5173	1025	993	-32
2484849892140812619159113292704541-163251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	23	18707	22354	3647	21351	25886	4535	915	1080	165
251463617008237218917230214104821850292616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	24	8484	9892	1408	12619	15911	3292	704	541	<mark>-163</mark>
2616953719663927102122516145798232821189010328-156227645277851333714489501806589499-90	25	14636	17008	2372	18917	23021	4104	821	850	29
27 6452 7785 1333 7144 8950 1806 589 499 -90	26	169537	196639	27102	122516	145798	23282	11890	10328	-1562
	27	<mark>64</mark> 52	7785	1333	7144	8950	1806	589	499	-90

Nevertheless the data of Table 1 indicate that the trend for higher tax deductions from household income is not typical of all the regions. In other words there are regions where we see reductions in tax revenues from houdehold income and there are regions where we can see growth of tax revenues from the income of population. Such a situation can be put down to a fact that the structure of household income consists of both taxable incomes and non-taxable incomes (in particular welfare pays and spocial transfers).

At the same time the analysis of changes in household iuncome structure in terms of some Ukrainian regions (see Table 2 data as generalized and calculated using ukrstat.gov.ua information) does not give any clear explanation of the changes in size of taxes levied from household income.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Table 2. Changes in the structure of household incomes as resulted from 2009-2010 period

<u>ISSN: 2249-1058</u>

	absolute chang	structure	of income	structure of income		
	2010, m	in 20	09, %	in 2010, %		
Regions	non-taxable income	taxable-income	non- taxable income	taxable income	non- taxable income	taxable income
1	2124	5112	44,02	55,98	41,32	58,68
2	2547	4088	40,86	59,14	40,37	59,63
3	1840	2177	43,34	56,66	43,85	56,15
4	3752	13090	37,93	62,07	34,97	65,03
5	5478	16480	40,06	59,94	37,26	62,74
6	2189	3113	44,08	55,92	43,51	56,49
7	2348	1972	43,35	56,65	45,64	54,36
8	<mark>2</mark> 360	6000	37,32	62,68	35,64	64,36
9	2492	3022	44,92	55,08	44,97	55,03
10	2358	5622	39,96	60,04	38,00	62 <mark>,00</mark>
11	1662	2258	42,97	57,03	42,86	57,1 <mark>4</mark>
12	2733	6874	46,26	53,74	42,94	57,06
13	4136	7213	41,21	58,79	40,23	59,77
14	1912	3089	39,87	60,13	<u>39,55</u>	60,45
15	3069	7337	42,24	57,76	39,73	60,27
16	2031	4278	39,85	60,15	38,45	61 <mark>,55</mark>
17	2106	2606	43,25	56,75	43,56	56,44
18	1653	2722	40,65	59,35	40,14	59,86
19	1778	2013	<mark>4</mark> 6,35	53,65	46,46	53,54
20	3994	8864	<mark>40,46</mark>	<mark>59,5</mark> 4	38,66	61,34
21	1609	2436	42,86	57,14	42,26	57,74
22	2247	2926	42,25	57,75	42,48	57,52
23	1731	2804	43,29	56,71	42,39	57,61
24	1517	1775	45,78	54,22	45,84	54,16
25	1504	2600	43,63	56,37	42,39	57,61
26	-2723	26005	35,69	64,31	28,13	71,87
27	671	1135	48,22	51,78	45,99	54,01

As it can be seen from Table 2 and Table 1 it is quite difficult to find a simple relation bewteen the changes in household income structure in its regional aspect and the changes in the size of taxes paid from the income of population.

Thus it would be reasonable to analyse efficiency of household income generation in the regional aspect for which we are going to use stochastic frontier analysis.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Stochastic frontier analysis of the test data

With the iam of solving the task we primarily should define the formula of the function of effifiency frontier of the object (process) under research /

Using the results of works by Gluschenko, Lyashenko, & Somova (2013) for calculating the efficiency of incomes received by population we will employ the following model of efficiency frontier :

$$Ln(DN) = \beta_0 + \beta_1 \cdot Ln(VN) + \beta_2 \cdot Ln(ZN) + v - u, \qquad (4)$$

DN – vector which defines the size of values of that part of household income in terms of some regions which is liable to taxation;

VN – vector which determines the number of employed population in any given region;

ZN – vector that determines the average wage in any given region during the period under consideration .

Herewith we shall assume that randomized components of fronrier model formulation (4) are distributed as follows: $v \approx N(0, \sigma_v^2)$, $u \approx N_+(0, \sigma_u^2)$. In their turn model's output data for formula (4) are the basis for receiving the assessment of efficiency of received household income and the the assessment of efficiency of population income taxation in line with formula (1).

Table 3 (all the calculations were completed using ukrstat.gov.ua information and with the help of FRONTIER4.1 software available free) gives parameters and statistical values for the model according to formula (4) that determined the frontiers of efficiency after the results of their approval in real2009 and 2010 data for Ukraine. The calculations were completed at the level of significance at 0,05.

As it can be seen in Table 3 the general value of taxable household income in terms of regions is mostly determined by the size of average wage in the region.

Table 4 (as calculated with the help of FRONTIER 4.1 software using ukrstat.gov.ua information) introduces the results of efficiency assessment in the formation of received taxable household incomes for each region taken separately in line with formula (4).

Table 3.Parameters and statistical values for the model in line with formula (4) which considers the frontiers of efficiency after the results of their approval in real 2009 and 2010 years data for Ukraine

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

142

Volume 3, Issue 10

	Periods under consideration							
Parameter	2009	год	2010 год					
	Parameters	t-value	Parameters	t-value				
	assessment		assessment					
eta_0	0,52021334E+01	6,82	0,56256455E+01	7,94				
eta_l	-0,99045414E-09	-3,89	-0,12771256E-0	-5,63				
β_2	0,72631597E+00	5,82	0,70265811E+00	6,09				
σ^2	0,1355	_	0,1149	—				
γ	0,0500	_	0,9300	_				

 $\sigma^2 = \sigma_v^2 + \sigma_u^2, \ \gamma = \frac{\sigma_u^2}{\sigma^2}.$

 Table 4 Result of efficiency assessment in the generation of received taxable household

 income for each region taken separately

	U U					
Regions	Efficiency a	assessment	Pagions	Efficiency assessment		
	2009	2010	Regions	2009	2010	
1	0,9442	0,7220	15	0,9475	0,7534	
2	0,9422	0,8682	16	0,9433	0,9449	
3	0,9441	0,8085	17	0,9338	0,4688	
4	0,9366	0,3881	18	0,9375	0,5842	
5	0,9371	0,9555	19	0,9437	0,7700	
6	0,9367	0,5781	20	0,9360	0,3712	
7	0,9327	0,4104	21	0,9331	0,2781	
8	0,9475	0,7449	22	0,9381	0,6146	
9	0,9368	0,5749	23	0,9306	0, <mark>5</mark> 911	
10	0,9463	0 <mark>,</mark> 7345	24	0,9403	0, <mark>6</mark> 016	
11	0,9452	0,8776	25	0,9352	0,5063	
12	0,9474	0,7455	26	0,9515	0,9998	
13	0,9476	0,7180	27	0,9285	0,3865	
14	0.9381	0.6247				

In Table 4 it can be seen that as of the results of 2010 the efficiency of generating received taxable income decreased as compared to the results of 2009. Taking into consideration the growth of gross regional product and growth of household income in some regions on the whole it can be presumed that reduction of collected taxes in terms of separate regions is

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

Volume 3, Issue 10

<u>ISSN: 2249-1058</u>

primarily resulting from the lower efficiency of recived taxable income. At the same time this reduction considered in line with given model of efficiency frontier after formula (4) can be insufficient rise in wages. This conclusion is made on the basis of parameters and statistics for the model under consideration after formula (4) as compared to the data of Table 1 and Table 4. This conclusion is back up by the fact that the structure of taxable income 85%-90% of it are made up by the wages (according to ukrstat.gov.ua). At the same time even though throughout 2009-2010 the tax burden on wages remained intact but was different from the level of wages, the tax burden to other taxable incomes is not sufficiently regulated. This in particular concerns so much disputed source of income as bank deposit incomes (see the relevant discussion at the Internet-site of the National Bank of Ukraine or Association of Ukrainian Banks: bank.gov). In other words the absolute changes in the structure of household income after the results of 2009-2010 (see Table 2) are conditioned not only by the rise of wages which on average in Ukraine was 17% (as retrieved from ukrstat.gov.ua). At the same time the average rise of taxable household income for the same period made 27% (calculated based on ukrstat.gov.ua). Thus we received the following results of the assessment of efficiency of received taxable household income for each region taken separately (see Table 4).

Conclusions

Thus the researches we have completed make it possible to assume that among the components of the comparative analysis of the assessment of tax burden's efficiency on household income we should consider both the efficiency of receiving this income with the consideration of economic development of administrative territorial units of the country and the structure of income received by populaiton and specific character of tax burden in terms of any given element of such a structure.

At the same time our completed researches show the possibility and feasibility of using stochastic frontier analysis for analysing efficiency of population's income generation in their reghional aspect. Herewith on the basis of actual model of building efficiency frontier for generating received income we have concluded about insufficiency of wage rise which eventually impacts the size of received income.

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell's Directories of Publishing Opportunities, U.S.A. International Journal of Marketing and Technology http://www.ijmra.us

References:

Aigner, D., Lovell, C. A. L., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. *Journal of econometrics*, *6*(1), 21-37.

Andrews, W. D. (1972). Personal deductions in an ideal income tax. *Harvard Law Review*, 309-385.

Battese, G. E., & Coelli, T. J. (1992). Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India. *Journal of productivity analysis*, *3*(1-2), 153-169.

Bird, R. M., & Zolt, E. M. (2004). Redistribution via taxation: the limited role of the personal income tax in developing countries. *UCLA Law Review*, *52*, 1627-1686.

Farrell, M. J. (1957). The measurement of productive efficiency. *Journal of the Royal Statistical Society. Series A (General)*, *120*(3), 253-290.

Gluschenko, V. V., Lyashenko, V. V. & Somova V. V. (2013) Analysis of the Population Income Tax Burden, Using the Method of Stochastic Limits. *European Researcher*, 40 (2-1), 286-292.

Jondrow, J., Knox Lovell, C. A., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. *Journal of econometrics*, *19*(2), 233-238.

Kuzemin, O., & Lyashenko V. (2008). Analysis of Spatial-temporal Dynamics in the System of Economic Security of Different Subjects of Economic Management. *Information Technologies and Knowledge*, 2(3), 234-238.

Lee, Y., & Gordon, R. H. (2005). Tax structure and economic growth. *Journal of public economics*, 89(5), 1027-1043.

Schultz, T. P. (1998). Inequality in the Distribution of Personal Income in the World: How it is Changing and Why. *Journal of Population Economics*, *11*(3), 307-344.

145